Erasing Epigenetic Marks: Eternal Sunshine of the Spotless Epigenome

The Scientist is bringing together a panel of experts who will share their research into editing the epigenome.  Attendees will have an opportunity to interact with the experts, ask questions, and seek advice on topics related to their research.

Written byThe Scientist Creative Services Team
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Epigenetic marks come in many forms, from cytosine methylation to histone modification, and the changes they induce are frequently heritable. Modifications caused by traumatic events can be maladaptive in the wake of the stressor, as well as in subsequent generations, but little is known about the process for erasing these epigenetic modifications from the genome. To explore the current progress towards understanding the mechanism(s) behind erasing epigenetic marks, The Scientist is bringing together a panel of experts who will share their research into editing the epigenome. Attendees will have an opportunity to interact with the experts, ask questions, and seek advice on topics related to their research.

Topics to be covered:

View the Video now

Alex Drohat, PhD Associate Professor, Department of Biochemistry and Molecular ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH