Evolving Multicellularity

Using an artificial selection paradigm, researchers watch as unicellular yeast evolve into snowflake-like clusters with distinct multicellular characteristics.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A yeast cluster with dead cells shown in redWILLIAM RATCLIFF, UNIVERSITY OF MINNESOTA

In as little as 100 generations, yeast selected to settle more quickly through a test tube evolved into multicellular, snowflake-like clusters, according to a paper published today (January 16) in Proceedings of the National Academy of Sciences. Over the course of the experiment, the clusters evolved to be larger, produce multicellular progeny, and even show differentiation of the cells within the cluster—all key characteristics of multicellular organisms.

“It’s very cool to demonstrate that [multicellularity] can happen so quickly,” said evolutionary biologist Mansi Srivastava of the Whitehead Institute for Biomedical Research in Massachusetts, who was not involved in the research. “Looking at the fossil record, we learned it took a very long time whenever these different transitions to multicellularity happened. Here they show it can happen ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit