Factoring in Face Time

How the study of human social interactions is helping researchers understand the spread of diseases like influenza and HIV

Written byAdam Kucharski
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

STEMMING THE SPREAD: People wear face masks in Mexico City as a precaution against the 2009 swine flu pandemic that began in April of that year.© ELIANA APONTE/REUTERS/CORBIS

Two weeks into 2013, the governor of New York declared a statewide public-health emergency. Only halfway through the flu season, almost 20,000 cases of influenza had already been reported in the state, a fourfold increase over the previous winter. To tackle the epidemic, Governor Andrew Cuomo increased the availability of vaccines and allowed pharmacists to vaccinate people under 18.

As well as protecting individuals, better vaccination coverage can also help curb disease transmission. But there are still many outstanding questions regarding how infections like flu actually spread. Where do most transmissions occur? What dictates an individual’s risk of infection? Which groups should we target with control measures?

For many pathogens, social contacts are an important component of disease transmission. From influenza to SARS, our risk ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo