First Organ-Specific Tissue Sheets

The material is durable, flexible, and can serve as a scaffold for cell growth, a study shows.

Written byAshley Yeager
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A tissue paper (green) supports the growth of an ovarian follicle (purple) in this SEM imageADAM JAKUS/NORTHWESTERN UNIVERSITYAn accidental spill in the lab has led to the development of bioactive “tissue papers” that could act as a scaffold to grow cells and repair wounds. Described August 7 in Advanced Functional Materials, the cellular scaffolds are the first of their kind to be organ-specific, and researchers have made six different kinds.

Materials engineer Adam Jakus, a postdoc at Northwestern University, discovered the scaffolds after spilling a 3-D printable ovary ink, which is made of decellularized ovarian tissue. He’d previously developed similar materials to repair and regenerate bone, muscle, and nerve tissue. “I knew the spill would be easier to clean up if I let the ink dry,” he tells The Scientist in a phone interview. When Jakus went to wipe up the dried ink, he found it had spread and hardened into a thin, pliable, yet durable sheet.

Having worked in the past with surgeons on biomaterials, Jakus thought the flexibility and stability of the “tissue paper” had the potential to be used in surgeries, wound healing and possibly cell growth. He decided to try to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel