Fish Size, Vision Skills Explained

Scientists describe molecular underpinnings of salmon size and of fishes’ ability to navigate murky environments in separate studies.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIPEDIA, AARON GUSTAFSONThe age—and, therefore, size—of salmon when they mature is controlled by the same gene in males and females, but acts differently in the sexes, scientists reported today (November 5) in Nature. VGLL3 promotes earlier maturation in males and later maturation in females.

The study describes how a single gene can drive sex differences in the optimal form of a trait, in this case, smaller size at maturity for males and larger size for females. “Since different forms of the gene are favored in males and females, natural selection favors both forms being maintained in the population. This leads to the variation in age at maturity being maintained, which promotes the stability and resilience of Atlantic salmon populations,” Jaakko Erkinaro, a coauthor from the Natural Resources Institute Finland, said in a statement.

Examining genetic information from 1,500 salmon, the researchers found two variants of VGLL3, one for early maturity and one for later maturity. Heterozygote fish ended up expressing the phenotype that was most optimal for its sex. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH