Fixing Protein Folding

A small molecule that stabilizes a misfolded receptor can treat symptoms of a genetic mutation in mice, researchers show.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, GEORGE SHUKLINThough many diseases arise because the protein product of a gene does not function correctly, others occur because misfolded proteins get stuck in the endoplasmic reticulum or are degraded before arriving at the site where they should act in the cell. Scientists have explored the use of small molecules called pharmacological chaperones, which bind misfolded proteins and stabilize them or act as templates that encourage the molecules to fold correctly, in order to treat lysosomal storage diseases, familial amyloid polyneuropathy, phenylketonuria, and other disorders of protein folding. Now, researchers led by P. Michael Conn of Texas Tech University have shown that a mouse model that does not respond to gonadotrophin-releasing hormone (GnRH) due to a mutation that causes misfolding of the GnRH receptor (GnRHR) can be treated with a pharmacological chaperone. Their work was published today in Proceedings of the National Academy of Sciences.

“I think chemical chaperones are a terrific idea,” said Dagmar Ringe, a professor of biochemistry and chemistry at Brandeis University in Waltham, Massachusetts, who was not involved in the work. “It’s a great way of approaching a problem that hasn’t been really appreciated in the sense that we’re talking about unstable or . . . misfolded proteins. There are so many cases where this type of intervention would actually be really useful.”

Conn’s group generated a mouse model with a mutation that can result in the human disease hypogonadotropic hypogonadism (HH), in which a misfolded GnRH receptor causes loss of testis or ovary function. The male mice with this mutation had small testes, produced few mature sperm, and had abnormal levels of testosterone. The female ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours