Florida Is Having a 10-Month Streak of Toxic Red Tide

Can clay particles, ozone, or phages stop the algae bloom that is killing wildlife and posing a health risk to humans?

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: An aerial view of the Florida red tide, taken in August 2018
VINCE LOVKO, MOTE MARINE LABORATORY

In southwest Florida, toxic algae blooms have painted its normally bright blue coastal waters a rusty red. This so-called red tide has killed hordes of marine animals and is entering its 10th month of existence—making it one of the longest-lasting cases documented to date.

Red tides occur across the globe and are caused by a variety of algal species. The microorganism behind Florida’s outbreak is Karenia brevis, a marine dinoflagellate that releases brevetoxins, neurotoxic compounds that can be lethal to wildlife and cause neurological, respiratory, and gastrointestinal problems in humans. This year’s blooms have left hundreds of animals, including fish, turtles, and manatees, dead on the state’s shores.

The outbreak shows no signs of abating anytime soon. “We’re entering into what’s typically the bloom season,” says Marc Suddleson, the program manager for the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis

Nuclera’s eProtein Discovery

Nuclera and Cytiva collaborate to accelerate characterization of proteins for drug development