Gazing into Science’s Crystal Ball

Basic research successes offer glimpses into future scientific advancements, but the outcomes are subject to change.

Written byMeenakshi Prabhune, PhD
| 3 min read
Robot hand holding glass sphere with glowing fiber neon communication wires
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A couple of years ago, I interviewed a patient who suffered from an aggressive form of prostate cancer to discuss his clinical trial experiences. In his search for suitable clinical trials, he had thoroughly studied the scientific details underlying his cancer. In this context, he mentioned how an increasingly popular immunotherapy seemed out of reach for him because it worked well for blood cancers but hit a wall when it came to solid tumors. At that moment, I mentally transported back to a front-row seat at a conference that I had attended several years ago.

That conference talk was my first encounter with the concept of coating immune cells with receptors that recognize cancer cells. The presenter concluded his slides with a summary of advantages and shortcomings of the chimeric antigen receptor (CAR) T strategy, and I scribbled in my notepad that this “approach seems challenging for solid tumors.” I found it fascinating that this detail came back to me—albeit from the clinic rather than the bench this time.

People often view basic research as educational exercises where scientists tinker around in the lab, but it is, in fact, the forefront of innovation. Keeping a pulse on basic research allows one to witness the birth of ingenious ideas and the development of cutting-edge technologies, some of which might change people’s lives someday.

Take the genome editing tool, CRISPR, for example. When this technology made an entrance just over a decade ago, researchers knew right away that this splash would ripple into many spheres of applications.1 So last year, when the first CRISPR-based gene therapy, Casgevy, was approved by the FDA for treating sickle cell disease and transfusion-dependent beta thalassemia, no one batted an eye. Yet, while many expected this momentous win, very few would have guaranteed it in advance.

That’s because researchers are cautiously optimistic when it comes to new advances in science and technology. Just like a game of snakes and ladders, all ideas start at a level playing field. Some progress or regress rapidly because of unexpected developments. A relatively slow research area might suddenly achieve significant milestones due to a new methodology, or a steadily rising topic can grind to a halt if a prevailing theory is overturned.

A recent, prime example of this unpredictability is, ironically, a prediction model. When Alpha Fold, an artificial-intelligence (AI) based model debuted about five years ago, it almost instantaneously provided protein biologists with the boost they needed to solve a decades-long problem.2 With protein folding sorted, AI applications unfolded in abundance.

Today, with increasing crosstalk between interdisciplinary researchers, if a transformative technology props up in one field, it rapidly spreads into other areas as well. Case in point: Scientists use CRISPR to improve the potency of immune cells for treating cancer, and researchers are already looking to identify patient-specific antigens using AI to optimize treatments.

Although I could not confidently pinpoint the winning strategy for cancer treatments to my interviewee at the time, I believe that every incremental positive result is a step in the right direction. Given all the uncertainty, tracking the progress in basic research might seem like holding an unmarked winning lottery ticket among a thousand others. However, the good news is that no matter which idea gets picked, we all end up winning.

Related Topics

Meet the Author

  • Meenakshi Prabhune headshot

    Meenakshi is the Editor-in-Chief at The Scientist. She is passionate about the dissemination of science and brings several years of experience in diverse communication roles including journalism, podcasting, and corporate content strategy. Meenakshi secured her PhD in biophysics at the University of Goettingen, Germany, which sparked a life-long love for interdisciplinary biological sciences and a mild tolerance for beer. In her spare time, she loves to travel.

    View Full Profile

Published In

Spring 2024 cover
Spring 2024

Turning on the Bat Signal

Research into bat immune systems may help keep humans safe from viral attacks.

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA