Gene Activity Could Give Clues to Time of Death

RNA-sequencing data reveal that specific tissues have distinct changes in gene expression after an individual has passed away.

Written byAshley Yeager
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, SOUTH_AGENCYResearchers have identified specific gene activity patterns that appear in human tissue shortly after death. These findings, reported today (February 13) in Nature Communications, could one day help crime-scene investigators pinpoint time of death and improve forensic analysis.

By examining gene activity in 36 different postmortem human tissues, Roderic Guigó, a computational biologist at the Centre for Genomic Regulation in Barcelona, and his colleagues found patterns in the way gene expression increased or decreased with time.

“The response to the death of the organism is quite tissue specific,” Guigó tells Science. He explains that muscle genes had swift boosts or drops in activity, while gene activity in the brain and spleen didn’t change much with time. Guigó and his colleagues also observed that the majority of the changes occurred 7 to 14 hours after death. After that, the transcriptome “seems to stabilize,” the researchers write in the paper.

The findings make sense, Ilias Tagkopoulos, a computer scientist at the University of California, Davis ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH