Gene Activity Could Give Clues to Time of Death

RNA-sequencing data reveal that specific tissues have distinct changes in gene expression after an individual has passed away.

Written byAshley Yeager
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, SOUTH_AGENCYResearchers have identified specific gene activity patterns that appear in human tissue shortly after death. These findings, reported today (February 13) in Nature Communications, could one day help crime-scene investigators pinpoint time of death and improve forensic analysis.

By examining gene activity in 36 different postmortem human tissues, Roderic Guigó, a computational biologist at the Centre for Genomic Regulation in Barcelona, and his colleagues found patterns in the way gene expression increased or decreased with time.

“The response to the death of the organism is quite tissue specific,” Guigó tells Science. He explains that muscle genes had swift boosts or drops in activity, while gene activity in the brain and spleen didn’t change much with time. Guigó and his colleagues also observed that the majority of the changes occurred 7 to 14 hours after death. After that, the transcriptome “seems to stabilize,” the researchers write in the paper.

The findings make sense, Ilias Tagkopoulos, a computer scientist at the University of California, Davis ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies