Gene discovery by stringent annotation

In the March Nature Genetics, Gopal et al. describe a two-step approach to identify novel genes by combining stringent annotation with broad gene-prediction techniques (Nature Genetics 2001, 27:337-340). The first step involves identification of potential exons using the GENSCAN gene-finding program. In the second step, predicted genes are compared with all available gene and protein sequences, including expressed sequence tags (ESTs) from other organisms, at the protein level (in all six transl

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In the March Nature Genetics, Gopal et al. describe a two-step approach to identify novel genes by combining stringent annotation with broad gene-prediction techniques (Nature Genetics 2001, 27:337-340). The first step involves identification of potential exons using the GENSCAN gene-finding program. In the second step, predicted genes are compared with all available gene and protein sequences, including expressed sequence tags (ESTs) from other organisms, at the protein level (in all six translation frames). The authors combined sequence comparisons with comparative protein structure modeling to confirm their results. Gopal et al. applied this method to analysis of the Drosophila genome to validate the technique. Filtering of over 19,000 plausible Drosophila genes (of which 12,124 matched the original 13,601 annotated genes) led to the identification of 1,042 putative novel genes, which had not previously been annotated but had strong supporting evidence as real gene candidates. These prediction results should serve as a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome