Gene discovery by stringent annotation

In the March Nature Genetics, Gopal et al. describe a two-step approach to identify novel genes by combining stringent annotation with broad gene-prediction techniques (Nature Genetics 2001, 27:337-340). The first step involves identification of potential exons using the GENSCAN gene-finding program. In the second step, predicted genes are compared with all available gene and protein sequences, including expressed sequence tags (ESTs) from other organisms, at the protein level (in all six transl

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In the March Nature Genetics, Gopal et al. describe a two-step approach to identify novel genes by combining stringent annotation with broad gene-prediction techniques (Nature Genetics 2001, 27:337-340). The first step involves identification of potential exons using the GENSCAN gene-finding program. In the second step, predicted genes are compared with all available gene and protein sequences, including expressed sequence tags (ESTs) from other organisms, at the protein level (in all six translation frames). The authors combined sequence comparisons with comparative protein structure modeling to confirm their results. Gopal et al. applied this method to analysis of the Drosophila genome to validate the technique. Filtering of over 19,000 plausible Drosophila genes (of which 12,124 matched the original 13,601 annotated genes) led to the identification of 1,042 putative novel genes, which had not previously been annotated but had strong supporting evidence as real gene candidates. These prediction results should serve as a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel