Gene Regulation Gives Butterflies Their Stunning Looks

Distantly related, lookalike Heliconius species arrive at the same appearance using the same few genes, but regulated differently, according to recent studies.

Written byKatarina Zimmer
| 5 min read
Heliconius erato demophoon butterfly mullerian mimicry wnta

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: Heliconius erato demophoon
RICCARDO PAPA, UNIVERSITY OF PUERTO RICO

As early as 1879, naturalist Fritz Müller noted that many of the Heliconius butterflies he found in the Amazon shared the exact same blazing black, red, and white wing color patterns, although they were different species. He reasoned that the butterflies had come to resemble each other’s striking coloration—indicating to birds that they were toxic and not to be eaten—aiding the species’ survival because the more individuals with these colorations, the faster predators learn to avoid them, an idea that became enshrined in textbooks as “Müllerian mimicry.”

How the butterflies evolved to resemble one another has long been a mystery. One pressing question for evolutionary biologists is whether pairs of lookalike butterfly species took the same paths to arrive at the same color pattern, using the same genetic and developmental machinery every time, or did they effectively reinvent the wheel, coming ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies