Gene Transfer Beats Some Flu Strains

Mice and ferrets are protected from several deadly viruses when genes encoding “broadly neutralizing antibodies” are delivered into their nasal passages.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Colorized transmission electron micrograph of Avian influenza A H5N1 viruses (in gold)WIKIMEDIA, CDCWhen a new influenza pandemic emerges, researchers struggle to produce vaccines for new strains quickly enough to stop the outbreak in its tracks. Scientists have also been unable to design a universal vaccine that triggers the production of antibodies capable of fighting a range of different strains. But there may be an alternative, albeit temporary, strategy: researchers have now demonstrated that a technique involving the delivery of genes into the nasal passage via a viral vector provided protection against a wide variety of flu strains in mice and ferrets. The findings were published this week (May 30) in Science Translational Medicine.

The study is an “important proof of concept,” Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases, who was not involved with the research, told The Wall Street Journal. But it remains to be seen if the method will be safe and effective in humans, he added.

According to ScienceNOW, James Wilson of the University of Pennsylvania was prompted by a discussion with Bill Gates in 2010 to see if adeno-associated virus (AAV)—a gene therapy tool previously used in animal studies to deliver genes to treat cystic fibrosis and AIDS—could courier genes encoding influenza antibodies into the noses of mammals, the site of initial infection.

After engineering an AAV to deliver the gene for a “broadly neutralizing antibody” that tackles various flu ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome