Genome Rap

The repressor-activator protein 1 (Rap1) binds to [C(1-3)A]n repeats, acts as a transcriptional activator, and represses gene expression at telomeres by binding to the accessory silencing proteins Sir2, Sir3 and Sir4. In the Advance Online Publication of Nature Genetics, Lieb and colleagues, at Stanford University, describe a study to investigate the genome-wide DNA-binding specificity of Rap1 and Sir proteins in vivo (Nature Genetics 2001 DOI:10.1038/ng569). They performed chromatin immunopreci

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The repressor-activator protein 1 (Rap1) binds to [C(1-3)A]n repeats, acts as a transcriptional activator, and represses gene expression at telomeres by binding to the accessory silencing proteins Sir2, Sir3 and Sir4. In the Advance Online Publication of Nature Genetics, Lieb and colleagues, at Stanford University, describe a study to investigate the genome-wide DNA-binding specificity of Rap1 and Sir proteins in vivo (Nature Genetics 2001 DOI:10.1038/ng569). They performed chromatin immunoprecipitation (IP) experiments, followed by whole genome microarray analysis to map protein-DNA interactions (for Rap1, Sir2, Sir3 and Sir4) at a resolution of 2 kb. Rap1 binding localized to 294 loci (representing 5.4% of all yeast genes). Half of the Rap1-binding sites mapped to telomeric regions. Lieb et al. identified 362 ORFs that are adjacent to intergenic Rap1-binding loci. These included known Rap1 targets such as ribosomal protein genes and genes encoding glycolysis enzymes. They identified 185 ORFs next to new Rap1-binding ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo