“Ghost Fibers” Help Heal Muscle Injury

Injured muscle cells leave behind organized collagen fibers that act as scaffolding for new tissue growth.

Written byKaren Zusi
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Activated muscle stem/progenitor cells (white) moving within basal lamina remnants (ghost fibers in red)CARNEGIE INSTITUTE FOR SCIENCE: MICAH WEBSTER, CHEN-MING FAN; NICHD: JENNIFER LIPPINCOTT-SCHWARTZ, URI MANORAt the site of a muscle injury, the dying muscle fibers leave behind “ghost fibers,” remnants of the extracellular matrix. According to a study published by researchers from the Carnegie Institution for Science and the National Institute of Child Health and Human Development last week (December 10) in Cell Stem Cell, these fibers help guide new muscle cells to grow in place to heal the injury in mice.

The research team anesthetized a set of mice and then either injected the animals’ hind limb muscles with a cardiotoxin or made manual incisions into the muscle. The striated muscle tissue began disappearing from wound sites one day after injury, leaving behind a series of collagen ghost fibers.

Using two-photon imaging and second-harmonic generation microscopy, the team was able to observe the stem cells and muscle precursor cells in each mouse orienting themselves along the ghost fibers as they prepared to grow new muscle tissue. When the researchers perturbed the system and changed the orientation of the ghost fibers, the resulting muscle tissue grew back improperly.

In their paper, the authors proposed that “the ghost fiber (1) is a key determinant for patterning muscle stem ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH