Giant Virus Has CRISPR-like Immune Defense

The genome of a mimivirus strain resistant to a virophage has repeated phage sequences alongside nuclease- and helicase-coding sections.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKMEDIA, PLOS BIOL, 7:e1000092, 2009A giant virus known as mimivirus possesses an immune program similar to CRISPR, a defense system evolved by bacteria and archaea and now adapted by scientists for genome editing, researchers reported in Nature this week (February 29). Like CRISPR, the viral version (dubbed MIMIVIRE) includes a stretch of host genome containing repeated sequences matching a pathogen’s along with genes that can destroy the invader’s genome.

The precise method of immunity still has to be deciphered, Francisco Mójica, a microbiologist at the University of Alicante in Spain, told Nature News. “It will certainly be of great interest to identify the mechanism involved in MIMIVIRE immunity,” he said, adding that he suspects it works differently from CRISPR.

Didier Raoult, a microbiologist at Aix-Marseille University in France, and colleagues had previously discovered that a virophage, called Zamilon, could infect mimivirus—but only two lineages (B and C). A third lineage of mimivirus (A) was resistant to the virophage.

Supposing the resistance might have roots in a CRISPR-like mechanism, Raoult’s team sequenced genomes from the three giant-virus lineages, and found a 28-nucleotide stretch of DNA in lineage A identical to a sequence in Zamilon. Part ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research