Healing with stem cells

Progressive heart failure and death can occur following myocardial infarction due to ventricular remodelling and fibrosis. Neoangiogenesis occurs normally within the infarcted tissue, but the new capillary network is unable to support the greater demands of the hypertrophied myocardium and remaining myocytes are unable to reconstitute the necrotic tissue.In the April Nature Medicine, Kocher and colleagues Columbia University, New York show that bone marrow from adult humans can be used to help n

Written byTudor Toma
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Progressive heart failure and death can occur following myocardial infarction due to ventricular remodelling and fibrosis. Neoangiogenesis occurs normally within the infarcted tissue, but the new capillary network is unable to support the greater demands of the hypertrophied myocardium and remaining myocytes are unable to reconstitute the necrotic tissue.

In the April Nature Medicine, Kocher and colleagues Columbia University, New York show that bone marrow from adult humans can be used to help neoangiogenesis and directly induce new blood vessel formation in the infarct area.

They used selected bone marrow cells from human donors and athymic rat recipients with ligation-induced coronary thrombosis as an experimental model of infarction. Kocher et al showed a significant increase in revascularization of post-infarction myocardial tissue after the intravenous administration of CD34+ human stem cells. The neoangiogenesis resulted in decreased apoptosis of hypertrophied myocytes in the peri-infarct region, long-term salvage and survival of viable myocardium, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA