Hearing Channel Components Mapped

Localization of two proteins important for inner ear hair cell function suggests they are part of the elusive mechanotransduction channel.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, OPENSTAX COLLEGEHair cells of the inner ear turn sound into electrical nerve signals through a so-called mechanotransduction channel, whose identity remains under wraps. A number of proteins have been implicated as part of this mysterious complex. Researchers have now reported that two of the suspects, TMC1 and TMC2, localize to just the right spots on hair cell tips.

The team generated mice that expressed fluorescently tagged versions of the Tmc genes. In the cochlea, hair cells have finger-like shoots arranged in stadium-seating rows. During the animals’ early development, the fluorescence showed up along the length of these shoots, called stereocilia, and at the tips. Later in life, the proteins were most abundant at the tips of the lower rows of stereocilia. TMC1 remains at the tips through adulthood, whereas TMC2 disappears.

All of this falls in line with the idea that TMC is part of the mechanotransduction channel. The finding that TMC1 and TMC2 are not present at the top of the tallest row of stereocilia, for instance, is consistent with findings that mechanotransduction doesn’t occur there.

“In our current study localizing TMC1 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies