Hibernating Rodents Feel Less Cold

Syrian hamsters and thirteen-lined ground squirrels are tolerant of chilly temperatures, thanks to amino acid changes in a cold-responsive ion channel.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Thirteen-lined ground squirrelCOURTESY OF THE GRACHEVA LABFor animals to hibernate, they must somehow avoid typical responses to cold temperatures, such as shivering and moving to warm up. According to a study published today (December 19) in Cell Reports, two hibernating mammals, Syrian hamsters (Mesocricetus auratus) and thirteen-lined ground squirrels (Ictidomys tridecemlineatus), have evolved changes in a cold-activated ion channel that makes it—and thus the rodents—less sensitive to cold than its counterpart in mice and rats, which do not hibernate.

This study “goes a long way to explain how [animals] can accommodate living in extremes,” says Mark Hoon, a neuroscientist at the National Institutes of Health who was not involved in the work. “They’ve basically switched off noxious responses to the cold that most mammals have.”

Syrian hamsters are native to northern Syria and thirteen-lined ground squirrels to Wisconsin, both chilly climates. “We’re trying to understand the molecular strategies that these animals employ in order to survive harsh environments during prolonged periods of cold exposure,” coauthor Elena Gracheva of Yale University tells The Scientist.

Gracheva and colleagues tested the animals’ temperature preference by putting them in an arena where the floor was made of two temperature-controlled plates, one warm and one cooler. While mice always ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH