Histone codes

The histone code hypothesis posits that distinct combinations of histone modifications can recruit chromatin-modifying enzymes and exert epigenetic control over heterochromatin assembly. In the March 15 ScienceXpress, Nakayama et al. describe a role for histone methylation in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe. The Clr4 protein methylated lysine 9 of histone H3 (H3Lys9) preferentially within heterochromatin-associated regions. H3Lys9 methylation led to the r

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The histone code hypothesis posits that distinct combinations of histone modifications can recruit chromatin-modifying enzymes and exert epigenetic control over heterochromatin assembly. In the March 15 ScienceXpress, Nakayama et al. describe a role for histone methylation in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe. The Clr4 protein methylated lysine 9 of histone H3 (H3Lys9) preferentially within heterochromatin-associated regions. H3Lys9 methylation led to the recruitment of the chromodomain protein Swi6, a homolog of Drosophila HP1. Both methylation and recruitment were dependent on activity of the histone deacetylase Clr3. Chromatin assembly by Swi6/Clr4 at the mating-type locus results in silencing. Hence, sequential deacetylation and methylation of histone tails leads ultimately to epigenetic inheritance patterns.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery