How Bad Will the Flu Season Get? Forecasters Are Competing to Figure it Out

From analyses of surface protein evolution to tweets on social media, scientists are gathering all the data they can to accurately predict influenza dynamics.

Written byChristina Reed
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Transmission electron micrograph of an influenza virus particleWIKIMEDIA, CYNTHIA GOLDSMITH, CDC/DR. ERSKINE L. PALMER, DR. M.L. MARTINWith flu season upon us in the Northern Hemisphere, the perennial game of flu forecasting—the effort to provide real-time and forward-looking estimates of influenza cases—is underway. And each year, the Centers for Disease Control and Prevention (CDC) makes a competition of it, asking forecasting teams to come up with their best predictions for the timing, peak, and intensity of the season.

The CDC provides weekly surveillance data of confirmed flu and outpatient visits for influenza-like illnesses from public health and clinical laboratories around the nation. But these data lag behind real-time activity and not everyone who gets sick with the flu goes to the hospital. To advance flu forecasting efforts, the agency launched its first forecasting challenge during the 2013-2014 flu season with a first-place prize of $75,000. Since then, the monetary award has gone away, but teams have continued to participate for the honor of providing the most accurate forecast for the start of the flu season, how bad it will get over the course of the season, and when cases will peak.

For the last three flu seasons, Roni Rosenfeld’s team at Carnegie Mellon ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems