How Did Natural Selection Shape Human Genes?

UPSIDE-DOWN MITO-MAPLE:Courtesy of Douglas C. WallaceResearchers constructed a phylogenetic tree based upon human mitochondrial DNA (mtDNA) variation. A branch bifurcates whenever they found an additional polymorphism. At the top of the inverted tree is mitochondrial "Eve"; the illustration shows two mtDNA sub-branches, or lineages, found in Europe and the Middle East. The J1- and J2-branch polymorphisms in the cytochrome b gene might have spread because they were climatically advantageous. (Rep

Written byDouglas Steinberg
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Courtesy of Douglas C. Wallace

Researchers constructed a phylogenetic tree based upon human mitochondrial DNA (mtDNA) variation. A branch bifurcates whenever they found an additional polymorphism. At the top of the inverted tree is mitochondrial "Eve"; the illustration shows two mtDNA sub-branches, or lineages, found in Europe and the Middle East. The J1- and J2-branch polymorphisms in the cytochrome b gene might have spread because they were climatically advantageous. (Reprinted from E. Ruiz-Pesini, et al., Science, 303:223–6, 2004.)

Many selective forces must have influenced human evolution, but the only one that all population geneticists seem to agree upon is malaria. Time and again, studies have identified certain DNA polymorphisms – most famously, the β-globin variant underlying red-cell sickling – that helped people resist this mosquito-borne disease. The reproductive success of such individuals spread these polymorphisms throughout regions where malaria is endemic.

Geneticists have been much more reluctant, in contrast, to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems