How Did Natural Selection Shape Human Genes?

UPSIDE-DOWN MITO-MAPLE:Courtesy of Douglas C. WallaceResearchers constructed a phylogenetic tree based upon human mitochondrial DNA (mtDNA) variation. A branch bifurcates whenever they found an additional polymorphism. At the top of the inverted tree is mitochondrial "Eve"; the illustration shows two mtDNA sub-branches, or lineages, found in Europe and the Middle East. The J1- and J2-branch polymorphisms in the cytochrome b gene might have spread because they were climatically advantageous. (Rep

Written byDouglas Steinberg
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Courtesy of Douglas C. Wallace

Researchers constructed a phylogenetic tree based upon human mitochondrial DNA (mtDNA) variation. A branch bifurcates whenever they found an additional polymorphism. At the top of the inverted tree is mitochondrial "Eve"; the illustration shows two mtDNA sub-branches, or lineages, found in Europe and the Middle East. The J1- and J2-branch polymorphisms in the cytochrome b gene might have spread because they were climatically advantageous. (Reprinted from E. Ruiz-Pesini, et al., Science, 303:223–6, 2004.)

Many selective forces must have influenced human evolution, but the only one that all population geneticists seem to agree upon is malaria. Time and again, studies have identified certain DNA polymorphisms – most famously, the β-globin variant underlying red-cell sickling – that helped people resist this mosquito-borne disease. The reproductive success of such individuals spread these polymorphisms throughout regions where malaria is endemic.

Geneticists have been much more reluctant, in contrast, to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo