PET-MRI of dopamine receptor density and network functionJOSHUA ROFFMAN MD, MMSCA new study reveals how dopamine contributes to working memory. Using simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), scientists have shown that the density of cortical dopamine D1 receptors in healthy individuals is related to a decoupling of the frontoparietal and default networks. The findings, reported by researchers from Massachusetts General Hospital (MGH) in Boston and colleagues today (June 3) in Science Advances, may offer clues to how dopamine signaling becomes disrupted in schizophrenia and other psychiatric disorders.
“The end game is trying to relate [dopamine signaling] back to schizophrenia and other disorders with working memory impairment,” study coauthor Joshua Roffman of MGH and Harvard University told The Scientist.
Dopamine in the prefrontal cortex is known to play an important role in working memory by increasing the activity of brain circuits relevant to a task and suppressing circuits that distract from that task. Previous studies have shown that working memory activates the frontoparietal control network (FPCN)—which is active when the brain is focused on a specific task—and deactivates the default network (DN)—which is active when the brain is at rest or during mind wandering. But it wasn’t clear how activity in these networks was related to dopamine signaling because studies like these typically ...