How epigenetics affects twins

In genetically identical siblings, DNA methylation and histone acetylation correlate with age and lifestyle

Written byCharles Choi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The largest twin study on epigenetic profiles yet reveals the extent to which lifestyle and age can impact gene expression, an international research team reports in this week's PNAS. Senior author Manel Esteller of the Spanish National Cancer Center in Madrid and colleagues found that 35% of twin pairs had significant differences in DNA methylation and histone modification profiles.

"These findings help show how environmental factors can change one's gene expression and susceptibility to disease, by affecting epigenetics," Esteller told The Scientist.

Esteller and colleagues in Sweden, Denmark, Spain, England, and the United States studied 80 sets of identical twins, ranging in age from 3 to 74 years. Their aim was to explore what role epigenetics plays in generating phenotypic differences between genetically identical twins.

The researchers analyzed the twins' global DNA methylation and histone H3 and H4 acetylation in samples from lymphocytes, buccal mucosal epithelial cells, skeletal muscle biopsies, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH