How Plant-Soil Feedback Affects Ecological Diversity

Researchers examine how underground microbes and nutrients affect plant populations.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, GORDON ROBERTSONPlant-soil feedback is the idea that as plants grow in soil, they change the soil, and that the soil in turn affects their growth. When the soil surrounding a given plant promotes the growth of conspecific plants, plant-soil feedback is positive. But when the soil discourages the growth of conspecific plants, the feedback is negative. In independent studies published in Science today (January 12), researchers examined how mycorrhizal fungi—which live in and around plant roots and help plants gather nutrients—affect plant population diversity.

Both groups used greenhouse experiments to model plant-soil feedback, examining plants with different microbial symbioses and nutrient-gathering strategies. François Teste of the University of Western Australia and IMASL-CONICET/UNSL in San Luis, Argentina, and colleagues used their resulting data to predict how plant-soil feedback relationships might affect plant diversity in the long run. Meantime, Jonathan Bennett of the University of British Columbia, Canada, and colleagues tested their greenhouse study findings in the field.

“The take-home message is that these below-ground mechanisms—which, in general, we call the plant-soil feedback mechanism—[are] important in driving local plant diversity,” Teste told The Scientist.

“We knew before . . . that there is a range in direction in strength of feedback,” ecologist Justine Karst of the University of Alberta in Canada, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome