How RNA polymerase moves

The molecule appears to shift along nucleic acid using a ratchet system, researchers report

Written byCharles Choi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Investigators may have uncovered the general mechanism that governs RNA polymerase movement, they report in the January 28 issue of Cell.

The finding "provides a framework for understanding how numerous external regulatory signals converge to change the properties of the RNA polymerase active site," co-author Evgeny Nudler of New York University told The Scientist.

Nudler and colleagues explored RNA polymerase's F bridge helix at its elongation complex's catalytic center. In 2001, Roger Kornberg at Stanford University and colleagues suggested the F bridge drives the enzyme forward by switching between its bent and straight conformations.

Using a genetic screen, the researchers isolated two mutations in Escherichia coli RNA polymerase's G loop, a region adjacent to the F bridge that recent studies suggested regulated F bridge conformation. One, G1136S, led to faster elongation as well as rendering RNA polymerase poorly responsive to pauses and terminators. The other, I1134V, rendered the enzyme slow ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH