How to Get Away from the Immune System

From manipulating host molecules to concealing their presence in the host’s body, microbes employ a wide range of tactics to dodge immune detection.

Black and white portrait by Mariella Bodemeier Loayza Careaga, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The immune system is highly trained to detect and eliminate any potential threat to the human body. While years of evolution have turned this system into a pathogen-killing machine, the microbes it fights have also evolved intricate strategies to evade it.

A Parasite and the Art of Cloaking

On the left, several red blood cells are shown sticking to blood vessel walls, with grey malaria parasites within them. On the right, a graph shows how parasitemia rises and falls over time as the parasite uses different forms of PfEMP1.
modified from © istock.com, Shivendu Jauhari, Irfan Setiawan, Eranicle

1) The malaria parasite Plasmodium falciparum expresses the protein PfEMP1 on the surface of erythrocytes to adhere the cells to blood vessel walls and escape clearance by the spleen.

2) PfEMP1 can be detected by immune cells. Through the process of antigenic variation, P. falciparum expresses different versions of it and escapes immune recognition.

Controlling the Enemy Within

On the left, Mycobacterium tuberculosis bacteria enter a macrophage and pathways by which the bacteria avoid destruction, and how they disrupt communication between the macrophage and a T cell (shown on the right) are depicted.
modified from © istock.com, ttsz

3) Inside macrophages, Mycobacterium tuberculosis dodges intracellular degradation by secreting virulence factors. Two effectors, EsxH and EsxG, inhibit the function of the ESCRT machinery, impairing the maturation of bacteria-carrying phagosomes.

4) Another Mycobacterium virulence factor, CpsA, disrupts another degradation pathway and blocks the activity of NADPH oxidase, impairing the destruction of the bacteria.

5) By affecting the normal function of ESCRT, M. tuberculosis EsxH-EsxG complex also disturbs the process of antigenic presentation via the MHC-II molecule.

A Viral Manipulator

On the left, HIV disrupts surface expression of MHC proteins in a T cell; HIV also impairs communication between T cells and an antigen-presenting cell, shown on the right.
modified from © istock.com, ttsz, bombuscreative

6) To stay hidden inside lymphocytes, HIV-1 expresses viral factors such as the negative factor (Nef) protein. In the infected cell, Nef downregulates the expression of MHC-I and MHC-II on the cell surface, impairing the presentation of viral antigens.

7) Nef also disrupts the proper formation of immunological synapses, the points of communication between T cells and antigen-presenting cells.

A Temporary Fungal Shield

on the left, a pink Candida albicans cell is shown. A section of the cell wall is enhanced to show how the beta-glucans, shown in green, are covered by mannans, shown in blue. On the right, macrophages recognize beta-glucans.
modified from © istock.com, ttsz, KKT Madhusanka

8) In Candida albicans, beta-glucans are a major target for immune detection by macrophages, which are one of the first lines of immune defense. The fungus covers its beta-glucans with a layer of mannans, shielding them from macrophage detection to prolong their stay in the host.

Read the full story.

  1. Deitsch KW, Dzikowski R. Variant gene expression and antigenic variation by malaria parasites. Annu Rev Microbiol. 2017;71:625-641.
  2. Chandra P, et al. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022;20(12):750-766.
  3. Fackler OT, et al. Modulation of the immunological synapse: A key to HIV-1 pathogenesis?. Nat Rev Immunol. 2007;7(4):310-317.
  4. Gow NAR, Lenardon MD. Architecture of the dynamic fungal cell wall. Nat Rev Microbiol. 2023;21(4):248-259.
  5. Gilbert AS, et al. Fungal pathogens: Survival and replication within macrophages. Cold Spring Harb Perspect Med. 2014;5(7):a019661.

Keywords

Meet the Author

  • Black and white portrait by Mariella Bodemeier Loayza Careaga, PhD

    Mariella Bodemeier Loayza Careaga, PhD

    Mariella is an assistant editor at The Scientist. She has a background in neuroscience, and her work has appeared in Drug Discovery News and Massive Science.

Published In

The Scientist Winter issue cover 2024
December 2024

Detection or Deception: The Double-Edged Sword of AI in Research Misconduct

New artificial intelligence tools help scientists fight back against a rising tide of research misconduct, but is it enough?

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide