How to Successfully Collaborate with Industry

In efforts to translate basic-science results into pharmaceuticals and other technologies, success cannot be taken for granted.

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© ISTOCK.COM/ENISAKSOY

Back in the ’90s, immunologist James Allison wasn’t trying to develop a cancer drug. “I was doing just really fundamental research trying to understand T-cell regulation,” he says. But in the course of that work, performed at the University of California, Berkeley, Allison discovered that a protein receptor called CTLA-4 negatively regulated T-cell responses to antigens, and that inhibiting that receptor with an antibody enhanced T-cell activity.

The clinical applications were obvious. “I had the idea that you might be able to exploit that to get immunological responses, T-cell responses, to tumor cells,” says Allison, now chair of immunology and director of immunotherapy at the University of Texas’s MD Anderson Cancer Center. In a 1996 Science paper, he and his colleagues reported that, in mice, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.

Published In

March 2018

The Transgender Brain

Researchers seek clues to the origins of gender dysphoria

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits