If It Ain't Broke . . .

Is there room to improve upon the tried-and-true, decades-old technology of artificial hearts?

Written byKerry Grens
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

TECHNO BEAT: The complex electronics that drive Carmat’s artificial heartCARMAT

In the mid-1960s, Bud Frazier met a 19-year-old man who had traveled with his mother from Italy to Texas to receive an aortic valve replacement. Frazier was in medical school, and he remembers how happy the man was at the prospect of having a normal heart. But in the hospital the patient’s heart arrested. Doctors opened up his chest, and Frazier’s job was to reach in and massage the heart to try to jump-start its beating.

Frazier rhythmically squeezed the man’s cardiac tissue between his fingers, but couldn’t get the heart to pump on its own, and eventually Michael DeBakey—a pioneering heart surgeon who was training Frazier at Baylor College of Medicine—told his student to stop trying. “I couldn’t quit, because as long as I ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH