Imaging Live Tissue Without Fluorescence

Modifying a vibration-based optical technique can capture images of living tissues, researchers show.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human breast cancer sample in situ: proteins (green), DNA (magenta), and fat (yellow) PURDUE UNIVERSITY, CHIEN-SHENG LIAOA type of imaging that can capture the activity of proteins, lipids, nucleic acids, and other molecules in some living tissues without the need for fluorescent labels has been in the works in the last decade. But while this technique, called in vivo vibrational spectroscopic imaging, can be used to visualize tissues without the need for fluorescent labels, it has still been too slow to be practical for most research and clinical applications.

Now, researchers at Purdue University in Indiana have made two major improvements to the approach, making it fast enough to be used in real-time and allowing imaging of not just transparent but also thicker, turbid living tissues. The results are published today (October 30) in Science Advances.

“This is a very innovative approach,” said Wei Min of the department of chemistry at Columbia University in New York City who was not involved in the study. “And the instrumentation the authors built is quite impressive.”

“This is good progress toward making this technique more practical,” said bioengineering professor Stephen Boppart, who develops novel imaging modalities at the University of Illinois and was not involved in the work. “The authors have made the acquisition faster, allowing image ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH