Immune Cells Can Deliver Deadly Packages

Much of the CD4+ T-cell death that occurs during HIV infection may be caused by direct delivery of the virus from neighboring cells, a study shows.

Written byAmanda B. Keener
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR; NIAID/SETH PINCUS, ELIZABETH FISCHER, AUSTIN ATHMAN

For HIV to develop into full-blown AIDS, the virus must deplete a subset of immune cells called CD4+ T cells, disabling an infected person’s adaptive immune system in the process. The details of precisely how HIV kills these T cells have only recently come to light, and a study published in Cell Reports last month (August 27) suggests the process differs from what many scientists expected. Researchers have found that the virus is most deadly to CD4+ T cells when it is transferred from active cells to resting ones.

“What our data show is that the major mechanism underlying CD4+ T cell depletion . . . requires cell-to cell transmission,” said study coauthor Warner Greene, an immunologist at the Gladstone Institute of Virology and Immunology ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH