Inflammation for Regeneration

Inflammatory signals in injured zebrafish brains promote the growth of new neurons.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Wikimedia, Marrabbio2The secret to zebrafish’s remarkable capacity for repairing their brains is inflammation, according to a report published online today (November 8) in Science. Neural stem cells in the fish’s brains express a receptor for inflammatory signaling molecules, which prompt the cells to multiply and develop into new neurons.

“This is a very interesting paper,” said Guo-li Ming, a professor of neurology and neuroscience at The Johns Hopkins University in Baltimore, who was not involved in the study. “It is well known that fish have this ability to self-repair, and this paper provides a mechanism,” she said.

Zebrafish, like many other vertebrates, are able to regenerate a variety of body tissues, including their brains. In fact, said Michael Brand, a professor of developmental genetics at the Technische Universität in Dresden, Germany, “mammals are the ones that seem to have lost this ability—they are kind of the odd ones out.” Given the therapeutic potential of neuron regeneration for patients with brain or spinal injuries, “we’d like to figure out if we can somehow reactivate this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies