Infographic: Gut Microbes Change How Well Drugs Work

Our resident bacteria can affect the activity of immunotherapies and other medicines in the body.

Written byShawna Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: MODIFIED FROM
© MOLLY THOMPSON

Gut bacteria harbor enzymes and pump out other molecules that can influence how medications are activated or broken down. One example is the Parkinson’s drug levodopa (L-dopa), for which studies have suggested these interactions help explain differences in efficacy among individuals.

Researchers found that some gut bacteria produce an enzyme called tyrosine decarboxylase that can convert L-dopa into dopamine as the drug passes through the small intestine, before it can reach the brain. Testing the stool of patients with Parkinson’s, the team discovered that the abundance of the bacterial gene for tyrosine decarboxylase correlated with a need for a higher dose of L-dopa to control their symptoms (Nat Commun, 10:310, 2019). Another team identified a small-molecule inhibitor that appears to block the enzyme’s action in mice (Science, 364:eaau6323, 2019).

After crossing the blood-brain barrier, L-dopa is converted to dopamine by neurons’ own enzymes to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile

Published In

On Target July Issue The Scientist
July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies