Infographic: A New Model of Synapse Strength

Synapses in the mouse neocortex can release multiple packages of neurotransmitters, suggesting that connection strength is more flexible than previously thought.

Written byAsher Jones
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

By monitoring changes in voltage (graphs) in individual neurons in the mouse neocortex, researchers measured the strength of connections between a presynaptic neuron’s axon terminal (purple) and the postsynaptic neuron’s dendrite (beige). In contrast to the widely accepted notion that neocortical synapses can only release one neurotransmitter-filled vesicle per firing, the research team found evidence that multiple vesicles can be released at these synapses, indicating that their strength is more plastic than previously appreciated. The researchers also confirmed the widely held assumption that physically larger synapses are stronger.

Read the full story.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

April 2021

Advancing Against Metastasis

Cancer cells can spread early and lie dormant for years

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research