Infographic: How Adult-Born Neurons Integrate into the Brain

Cutting-edge microscopy is revealing how new neurons made in adult mice’s brains tap into existing neuronal connections.

Written byAshley Yeager
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: © lisa clark

In recent years, images and videos taken with state-of-the-art microscopy techniques have shown that new neurons in the dentate gyrus of the hippocampus go through a series of changes as they link up to existing networks in the brain.

A neural stem cell divides to generate a new neuron (green).

As the new neuron grows, it rotates from a horizontal to a vertical position and connects to an interneuron (yellow) in a space called the hilus that sits within the curve of the dentate gyrus. The young neuron also starts making connections with well-established dentate gyrus neurons (blue) as well as neurons in the hippocampus (red).

Once connections are formed, mature neurons send signals into the new neuron, and the cell starts firing off more of its own signals. At around four weeks of age, the adult-born neuron gets hyperexcited, sending electrical signals much more often ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile

Published In

May 2020

Making Memories

The fundamental cognitive process is revealing itself to science

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery