insertional mutant database

Analysis of genome-wide mutant collection reveals a novel ethylene pathway protein family

Written byC Bishop
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

To date, the only report of a genome-wide collection of disruption mutants is for the unicellular budding yeast Saccharomyces cerevisiae. Such a collection of mutants enables the functional analysis of the full gene complement of an organism, but the creation of a similar collection for eukaryotes has been hampered by the efficiency of homologous recombination. In the August 1 Science, José M. Alonso and colleagues at The Salk Institute of Biological Studies report the generation of a genome-wide, sequence-indexed Arabidopsis thaliana insertion mutant collection. Using their mutant database, the authors identified a new family of proteins involved in the ethylene pathway (Science, 301:653-657, August 1, 2003).

Alonso et al. used selected Agrobacterium transferred DNA (T-DNA) to generate about 150,000 transformed A. thaliana plants. The genomic location of each integration event was mapped—identifying 88,122 T-DNA/genome junction sequences, and confirming the generation of mutation in 21,799 of the 29,454 annotated genes. The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH