Intronic sequences

We are far from understanding all the rules that govern the process of RNA splicing and defining the sequence information that governs intron definition. In the September 25 Proceedings of the National Academy of Sciences, Lee Lim and Christopher Burge at the Massachusetts Institute of Technology, Cambridge, USA, describe a computational approach for investigating intron splicing (Proc Natl Acad Sci USA 2001, 98:11193-11198).They chose transcripts from five eukaryote genomes (Saccharomyces cerev

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

We are far from understanding all the rules that govern the process of RNA splicing and defining the sequence information that governs intron definition. In the September 25 Proceedings of the National Academy of Sciences, Lee Lim and Christopher Burge at the Massachusetts Institute of Technology, Cambridge, USA, describe a computational approach for investigating intron splicing (Proc Natl Acad Sci USA 2001, 98:11193-11198).

They chose transcripts from five eukaryote genomes (Saccharomyces cerevisiae, Caernorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and human) whose exon-intron structures were well-defined. They analysed 5' and 3' splice signal motifs in short introns and used mathematical methods (Markov models and Monte Carlo simulations) to determine the amount of information required for intron recognition. While 5' and 3' splice signal sequences were sufficient to predict short introns in the fly and worm genomes (>90% accuracy), human and plant introns required additional transcript features, such as specific pentamer sequences ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo