It’s Getting Hot in Here

Methods for taking a cell's temperature

Written byKate Yandell
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

© ISTOCK.COM/KTSIMAGE/ERAXIONEven the earliest scientists knew that temperature was an important vital sign, signifying sickness or health. In the 17th century, Italian physiologist Sanctorio Sanctorius invented an oral thermometer to monitor patients. Now, 21st-century researchers have set themselves a new, more challenging task: taking the temperatures of individual cells.

“Temperature is one kind of basic physical parameter which regulates life,” says Mikhail Lukin, a physicist at Harvard University who has developed a diamond-based intracellular temperature sensor. “It determines the speed of all sorts of processes which occur inside living systems.”

But although temperature is a basic vital sign, scientists have a relatively poor understanding of how it varies among and within cells. “It turns out that to measure temperature reliably inside the cell is not easy,” says Lukin. “You cannot stick a large thermometer in there and maintain the cell viability.”

In the last five years, however, researchers have drawn on nanotechnology to create miniature thermometers that can reveal temperature heterogeneity both between cells and within them. “I can identify 2010, or around 2010, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH