Jumping genes in the brain

Retrotransposons in neurons could lead to brain differences between individuals

Written byCharles Choi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Genetic elements that jump around the genome can influence brain circuitry, scientists report in this week's Nature. In a study of rat adult hippocampus neural stem cells, US researchers discovered an up to twofold enrichment of the transcripts of retrotransposons known as L1 elements, which can jump around the genome and comprise roughly 20% of mammalian genomes.

"We thought retrotransposition events normally only occurred in germ cells, or in very early development, the first cell stages. This is the first evidence these events might be occurring in developing neurons seen in the adult brain," Haig Kazazian at the University of Pennsylvania in Philadelphia, who did not participate in this study, told The Scientist.

To investigate how L1s might retrotranspose, the researchers used a human L1 engineered with an enhanced green fluorescent protein that activated only when the entire construct underwent retransposition. In mice bearing this construct, immunofluorescence microscopy revealed fluorescence ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH