Key Osmotic Channel Protein Identified

A little-studied protein appears to be a critical part of the perplexing channel that prevents cells from bursting.

Written byRina Shaikh-Lesko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Pancreatic cells, in which SWELL1 is known to be expressed.WIKIMEDIA, POLARLYSA big piece of a long-standing puzzle—how cells maintain osmotic pressure via volume-regulated anion channels (VRACs)—appears to have been solved, as researchers reported in Cell today (April 10) having identified a key VRAC protein. Ardem Patapoutian of The Scripps Research Institute in La Jolla, California, and his colleagues found that this protein, which they’ve dubbed “SWELL1,” is a critical component of the osmotic channels that help keep cells from swelling until they explode.

“So far, nobody has been able to identify the proteins involved in mediating this widely-expressed current,” said Jorg Grandl of Duke University in Durham, North Carolina, who was not involved in this work. “To have a first report about one molecule that’s likely forming an ion channel that is mediating this current is a major step forward.”

Study coauthor Zhaozhu Qiu, a postdoctoral researcher in Patapoutian’s lab, first encountered VRACs while attending a conference talk that described how, for three decades, researchers have struggled to identify the proteins involved in the channels. VRACs keep the osmotic pressure of cells in check, using anions like chloride or iodide to generate an electrophysiological pulse when they’re open. These channels are ubiquitously expressed, making them difficult to isolate ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform