Keys to the Minibar

Degraded DNA from museum specimens, scat, and other sources has thwarted barcoding efforts, but researchers are filling in the gaps with mini-versions of characteristic genomic stretches.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

OLD BAT: Specimens from museum collections, such as this bat collected in 1923, present challenges to barcoding because their DNA can be badly degraded.COURTESY OF ELIZABETH L. CLARE

Specimen collectors from days of yore did not always handle their catch with care, at least not when it came to preserving DNA. You can’t blame them, of course. DNA as genetic material wasn’t even a twinkle in the scientific community’s eye a century ago. Aquatic specimens were often preserved in alcohol or formalin, making it all but impossible to extract usable DNA for barcoding analysis, a standard method of identifying species by variations in the same gene. Even among dry-preserved specimens, DNA breaks down fairly quickly, dissuading many barcoders from working with museum collections—with the result that they miss out on museums’ wealth of species information.

“Collections are the best places in the world to go collecting for biodiversity,” says Paul Hebert, a barcoding ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems