Keys to the Minibar

Degraded DNA from museum specimens, scat, and other sources has thwarted barcoding efforts, but researchers are filling in the gaps with mini-versions of characteristic genomic stretches.

kerry grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

OLD BAT: Specimens from museum collections, such as this bat collected in 1923, present challenges to barcoding because their DNA can be badly degraded.COURTESY OF ELIZABETH L. CLARE

Specimen collectors from days of yore did not always handle their catch with care, at least not when it came to preserving DNA. You can’t blame them, of course. DNA as genetic material wasn’t even a twinkle in the scientific community’s eye a century ago. Aquatic specimens were often preserved in alcohol or formalin, making it all but impossible to extract usable DNA for barcoding analysis, a standard method of identifying species by variations in the same gene. Even among dry-preserved specimens, DNA breaks down fairly quickly, dissuading many barcoders from working with museum collections—with the result that they miss out on museums’ wealth of species information.

“Collections are the best places in the world to go collecting for biodiversity,” says Paul Hebert, a barcoding ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo