Life in the Slow Lane

The speed of water flowing around coralline algae, a critical member of coral reef and coastal seaweed communities, affects their response to ocean acidification.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

GOING WITH THE FLOW: Coralline algae (pink) exposed to slow-flowing, acidified seawater (left) grew better, protected from the acidity by a thick layer of undisturbed water called the diffusion boundary layer (DBL). In fast-flowing, acidic seawater (right), the algae fared much worse: the DBL thinned, the plants’ calcium carbonate stores dissolved, and their growth diminished. © KIMBERLY BATTISTA

The paper
C.E. Cornwall et al., “Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa,” PLOS ONE, 9:e97235, 2014.

Anthropogenic ocean acidification threatens the survival of countless species and the delicate marine environments they live in. To understand these changes, Catriona Hurd of the University of  Tasmania in Australia and colleagues have been measuring how a reduction in pH affects coastal seaweed communities, in particular, coralline algae—red algae that form calcite deposits in their cell walls. Covering much of the rocky surface of intertidal regions globally, coralline algae provide settlement cues, biological signals that recruit the mobile larvae of sponges and other marine invertebrates to attach permanently to a substrate.

For coralline algae and other calcareous species, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Rina Shaikh-Lesko

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo