Malaria's many guises

is a genetically diverse and complex organism with mechanisms to evade host immunity and other antimalarial efforts.

Written byTudor Toma
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Understanding the genetic variation of the malarial parasite, Plasmodium falciparum, is of enormous importance in the continued fight against this public health scourge, but the degree of genetic diversity Plasmodium possesses has been unclear. Two papers in 18 July Nature, show that P. falciparum is a genetically diverse and complex organism with mechanisms to evade both host immunity and other pharmaceutical antimalarial efforts.

John Wootton and colleagues at the US National Institutes of Health (NIH), Bethesda, Maryland, examined microsatellite markers covering the 14 haploid chromosomes of P. falciparum. They observed that the level of genetic diversity varies substantially among different regions of the parasite genome, revealing extensive linkage disequilibrium surrounding the key chloroquine resistance gene (CQR) pfcrt and at least four CQR founder events (Nature 2002, 418:320-323).

In the second paper, Jianbing Mu and colleagues also at NIH, analyzed single nucleotide polymorphisms (SNPs) from 204 genes on chromosome 3 of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo