Man's best genome?

Scientists generate the highest-resolution draft sequence of the domestic dog

Written byAileen Constans
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Researchers released the draft genome sequence of the domestic dog in this week's issue of Nature, capping a multiyear project aimed at mapping genetic traits in man's best friend, and producing the highest-resolution draft to date of the canine genome. Scientists say they hope the latest addition to the genomic toolbox will serve as a particularly useful model for studying human diseases, given that hundreds of years of dog inbreeding has produced isolated subpopulations whose physical traits are easily linked to genetic structures.

The study authors have "pretty much unlocked a treasure chest of genetic variability that underlies phenotypic variability, that helps us to understand not only what regulates traits in dogs but also what regulates traits in humans," canine geneticist Patrick Venta of Michigan State University, who was not involved in the study, told The Scientist. "There's no other mammalian species that has as much genetic variability that causes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH