Measuring Consciousness

Researchers are identifying distinctive brain activity patterns that can be used to monitor patients under anesthesia and assess consciousness in “vegetative” patients.

Written byDan Cossins
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Electrodes are held in place with a cap during an EEG recordingWIKIMEDIA, CHRIS HOPEGeneral anesthesia has transformed surgery from a ghastly ordeal to a procedure in which the patient feels no pain. Despite its widespread use, however, little is known about how anesthesia produces loss of consciousness—a blind spot brought into sharp focus by the fact that patients still occasionally wake up during surgery. But over the past 5 years, researchers have made significant progress in understanding what happens in the brain as consciousness departs and returns.

Peering into the anesthetized brain with neuroimaging and electroencephalograph (EEG) recordings, scientists have found evidence to support the “integrated-information theory,” which holds that consciousness relies on communication between different brain areas, and fades as that communication breaks down. EEG studies have also revealed distinctive brain wave patterns that signal when consciousness is lost and regained, offering easily identifiable markers for this impairment of communication.

Though many questions remain, advances in brain activity monitoring promise to shed light the neural basis of consciousness, and to eradicate the nightmare of mid-surgery awakenings. What’s more, by combining EEGs with magnetic brain stimulation, researchers may be able to measure consciousness and track recovery in unresponsive patients diagnosed as “vegetative,” who in recent years have been shown to sometimes have ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies