Messages from intergenic space

A non-protein-coding RNA regulates a neighboring gene by simply being turned on

Written byDavid Secko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Although it's becoming more apparent that the intergenic space between protein-coding genes—often referred to as "junk"—is actively transcribed and often produces non–protein-coding RNAs, the role of these RNAs and their transcription is largely unknown. In the June 3 Nature, Joseph Martens, Lisa Laprade, and Fred Winston report a previously unknown form of gene regulation involving a non–protein-coding RNA, SRG1, which can regulate a neighboring gene by simply being transcribed.

"I was very pleased to see another role for intergenic transcription which primarily implicates the process of transcription itself rather than the non-coding RNA, which in this case, may be just a by-product," said Peter Fraser, from the Babraham Institute, Cambridge, UK, who was not involved in the study.

The work began with a Saccharomyces cerevisiae gene called SER3, which catalyzes a step in serine biosynthesis and was previously found to be tightly repressed by the yeast switch–sniff complex. This was ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH