Micro Farmers

Columbia University evolutionary ecologist Dustin Rubenstein explains just why it's so interesting and important to find slime molds that engage in a form of agriculture.

Written byCristina Luiggi
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Dictyostelium discoideum fruiting bodiesFLICKR, MICROBE WORLD

A

lthough agriculture is often touted as a pivotal human invention, it is not unique to us. It turns out that even slime molds with a penchant for sociality can farm. For Dustin Rubenstein, an evolutionary ecologist at Columbia University, this unexpected finding points to an evolutionary link between the ability to cultivate food and the development of complex social behavior (Nature, 469:393-96, 2011).

Dustin Rubenstein: We see it in a variety of organisms, most commonly in insects. Ants are the most well-known species outside of humans. But there are also beetles that farm their own food, and there are various subtypes of agriculture in some species of fishes. It’s certainly not widespread in the animal kingdom, but it’s more common than just in humans.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH