Microbes Expel Swarms of Vesicles

Scientists present the first evidence that marine cyanobacteria release vesicles—billions and billions of vesicles.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Scanning electron micrograph of the marine cyanobacterium Prochlorococcus, with small vesicles visible near the cell surface.COURTESY STEVEN BILLERMicroorganisms in the ocean release billions upon billions of tiny vesicles each day, but no one had noticed until very recently. Scientists published the first evidence of vesicle production by marine cyanobacteria in Science this week. “The finding that vesicles are so abundant in the oceans really expands the context in which we need to understand these structures,” MIT postdoc Steven Biller, the lead author on the paper, said in a press release.

So far, what Biller and his colleagues do know is that cultured Prochlorococcus—the most numerous photosynthetic organism on earth—continually produce vesicles, which contain proteins, DNA, and RNA; seawater samples are also abundant in vesicles. Vesicles collected from the wild contained DNA from a variety of organisms, suggesting that other microbes also shed them.

Further, the researchers found that nonphotosynthetic bacteria grown in the lab could be sustained with vesicles as their only source of carbon. “That’s kind of neat,” Marvin Whiteley, a microbiologist at the University of Texas, Austin, who was not involved in the study, told Wired. “It really changes how we think about marine ecosystems and how they’re set up and how nutrients are provided.”

Biller’s colleague Sallie Chisholm, a professor of biology ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH