Microbes Persist in Super-Salty Conditions

Extremophiles can thrive on perchlorates and metabolize carbon monoxide, researchers report.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mono Lake, a haven for salt-loving microbesWIKIMEDIA, KING OF HEARTSIf there’s any hope of finding microbial life that can thrive on Mars or elsewhere in the Solar System, scientists are likely to first find it in extreme environments on Earth. Researchers from Wichita State University in Kansas and colleagues recently discovered that bacteria can survive at high concentrations of perchlorates, salts that were long considered toxic to life. Meanwhile, a team from Louisiana State University in Baton Rouge has identified a type of archaea called Halobacteriales that can “breathe” carbon monoxide in the presence of these strongly oxidizing salts. Both groups presented their unpublished findings last week (June 17) at the American Society for Microbiology’s annual meeting in Boston.

“It’s a pretty good bet that wherever one finds water in an extraterrestrial system, it’s going to be salty,” microbiologist Gary King of Louisiana State, who led the carbon monoxide study, told The Scientist.

Life on Earth requires liquid water. Mars is far too cold and arid for liquid water to exist in abundance on its surface. But perchlorates—which the Phoenix lander and Curiosity rover have found in Martian regolith—could absorb water from the planet’s atmosphere, forming deliquescent brines that might support life.

Scientists have studied microbes that live in extremely salty environments—such as the Great Salt Lake and the Dead Sea—for more than a century. Most of their research has focused on how these organisms survive at high concentrations of sodium chloride, but few ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies