Microbes Persist in Super-Salty Conditions

Extremophiles can thrive on perchlorates and metabolize carbon monoxide, researchers report.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mono Lake, a haven for salt-loving microbesWIKIMEDIA, KING OF HEARTSIf there’s any hope of finding microbial life that can thrive on Mars or elsewhere in the Solar System, scientists are likely to first find it in extreme environments on Earth. Researchers from Wichita State University in Kansas and colleagues recently discovered that bacteria can survive at high concentrations of perchlorates, salts that were long considered toxic to life. Meanwhile, a team from Louisiana State University in Baton Rouge has identified a type of archaea called Halobacteriales that can “breathe” carbon monoxide in the presence of these strongly oxidizing salts. Both groups presented their unpublished findings last week (June 17) at the American Society for Microbiology’s annual meeting in Boston.

“It’s a pretty good bet that wherever one finds water in an extraterrestrial system, it’s going to be salty,” microbiologist Gary King of Louisiana State, who led the carbon monoxide study, told The Scientist.

Life on Earth requires liquid water. Mars is far too cold and arid for liquid water to exist in abundance on its surface. But perchlorates—which the Phoenix lander and Curiosity rover have found in Martian regolith—could absorb water from the planet’s atmosphere, forming deliquescent brines that might support life.

Scientists have studied microbes that live in extremely salty environments—such as the Great Salt Lake and the Dead Sea—for more than a century. Most of their research has focused on how these organisms survive at high concentrations of sodium chloride, but few ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH