Milling Magic

Ion beams carve slices in frozen cells, giving biologists an interior view.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Cryoelectron tomography (CryoET)—electron microscopy of frozen tissues—allows unparalleled observations of molecular complexes in as natural a state as possible. However, current electron microscopes can only view samples to a limited depth—approximately 0.5–1 µm—which has restricted cryoET to analyses of cell surfaces, isolated organelles, or microorganisms.

To get a glimpse inside eukaryotic cells, researchers have tried freezing and then slicing them with extremely sharp diamond or glass knives—cryo-ultramicrotomy. But “cutting with a mechanical knife introduces compression artifacts, which hinder interpretation of the images,” says Jürgen Plitzko of the Max Planck Institute of Biochemistry in Germany. Another strategy, using a beam of gallium ions to erode the surface of cells from above, has also proven inadequate for imaging deeply embedded structures.

Plitzko and his team combined principles from both techniques to create thin sections of cells using a focused ion beam as a blade. The ion beam is directed at an individual ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH