Milling Magic

Ion beams carve slices in frozen cells, giving biologists an interior view.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Cryoelectron tomography (CryoET)—electron microscopy of frozen tissues—allows unparalleled observations of molecular complexes in as natural a state as possible. However, current electron microscopes can only view samples to a limited depth—approximately 0.5–1 µm—which has restricted cryoET to analyses of cell surfaces, isolated organelles, or microorganisms.

To get a glimpse inside eukaryotic cells, researchers have tried freezing and then slicing them with extremely sharp diamond or glass knives—cryo-ultramicrotomy. But “cutting with a mechanical knife introduces compression artifacts, which hinder interpretation of the images,” says Jürgen Plitzko of the Max Planck Institute of Biochemistry in Germany. Another strategy, using a beam of gallium ions to erode the surface of cells from above, has also proven inadequate for imaging deeply embedded structures.

Plitzko and his team combined principles from both techniques to create thin sections of cells using a focused ion beam as a blade. The ion beam is directed at an individual ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies