Minimal Genome Created

Scientists build a living cellular organism with a genome smaller than any known in nature.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

C. BICKEL, SCIENCEBy stripping down the genome of a mycoplasma bacterium to the minimal genes required for life, Craig Venter and colleagues have created a new organism with the smallest genome of any known cellular life form. The work, published in Science today (March 24), is the closest scientists have come to creating a cell in which every gene and protein is fully understood—but they are not quite there yet.

“In biology, as we’ve been trying to do genetic and biological engineering, we’re frustrated by the fact that . . . evolution has given us a real mess—it’s really just bubble gum and sticks, piecing together whatever works,” said biomedical engineer Chris Voigt of MIT who was not involved in the study. “This [work] is one of the first attempts at a grand scale to go in and try to clean up some of the mess . . . so that we can better understand the genetics.”

The quest to synthesize a minimal genome with only the essential genes for life is one researchers at the J. Craig Venter Institute (JCVI) in San Diego have been doggedly pursuing for the better part of two decades. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad